DMHomo: Learning Homography with Diffusion Models

Author:

Li Haipeng1ORCID,Jiang Hai2ORCID,Luo Ao3ORCID,Tan Ping4ORCID,Fan Haoqiang3ORCID,Zeng Bing1ORCID,Liu Shuaicheng1ORCID

Affiliation:

1. University of Electronic Science and Technology of China, Chengdu, China

2. Sichuan University, Chengdu, China

3. Megvii Technology, Beijing, China

4. The Hong Kong University of Science and Technology, Hongkong, China

Abstract

Supervised homography estimation methods face a challenge due to the lack of adequate labeled training data. To address this issue, we propose DMHomo , a diffusion model-based framework for supervised homography learning. This framework generates image pairs with accurate labels, realistic image content, and realistic interval motion, ensuring that they satisfy adequate pairs. We utilize unlabeled image pairs with pseudo labels such as homography and dominant plane masks, computed from existing methods, to train a diffusion model that generates a supervised training dataset. To further enhance performance, we introduce a new probabilistic mask loss, which identifies outlier regions through supervised training, and an iterative mechanism to optimize the generative and homography models successively. Our experimental results demonstrate that DMHomo effectively overcomes the scarcity of qualified datasets in supervised homography learning and improves generalization to real-world scenes. The code and dataset are available at GitHub ( https://github.com/lhaippp/DMHomo ).

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program of China

“111”

Publisher

Association for Computing Machinery (ACM)

Reference74 articles.

1. Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krystian Mikolajczyk. 2017. HPatches: A benchmark and evaluation of handcrafted and learned local descriptors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 5173–5182.

2. Analytic-DPM: An analytic estimate of the optimal reverse variance in diffusion probabilistic models;Bao Fan;arXiv preprint arXiv:2201.06503,2022

3. MAGSAC: Marginalizing Sample Consensus

4. MAGSAC++, a Fast, Reliable and Accurate Robust Estimator

5. A Naturalistic Open Source Movie for Optical Flow Evaluation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3