An Adaptive Fast-Multipole-Accelerated Hybrid Boundary Integral Equation Method for Accurate Diffusion Curves

Author:

Bang Seungbae1,Serkh Kirill2,Stein Oded3,Jacobson Alec4

Affiliation:

1. University of Toronto, Canada and Amazon, USA

2. University of Toronto, Canada

3. Columbia University, USA, Massachusetts Institute of Technology, USA, and University of Southern California, USA

4. University of Toronto, Canada and Adobe Research, Canada

Abstract

In theory, diffusion curves promise complex color gradations for infinite-resolution vector graphics. In practice, existing realizations suffer from poor scaling, discretization artifacts, or insufficient support for rich boundary conditions. Previous applications of the boundary element method to diffusion curves have relied on polygonal approximations, which either forfeit the high-order smoothness of Bézier curves, or, when the polygonal approximation is extremely detailed, result in large and costly systems of equations that must be solved. In this paper, we utilize the boundary integral equation method to accurately and efficiently solve the underlying partial differential equation. Given a desired resolution and viewport, we then interpolate this solution and use the boundary element method to render it. We couple this hybrid approach with the fast multipole method on a non-uniform quadtree for efficient computation. Furthermore, we introduce an adaptive strategy to enable truly scalable infinite-resolution diffusion curves.

Funder

Swiss National Science Foundation's Early Postdoc.Mobility fellowship

NSERC Discovery Grants

National Research Foundation, Korea

Canada Research Chairs Program

Sloan Research Fellowship

Ontario Early Research Award program

NSERC Discovery Grant

DSI Catalyst Grant program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference51 articles.

1. Accurate quadrature of nearly singular line integrals in two and three dimensions by singularity swapping

2. Fast winding numbers for soups and clouds

3. Josh Barnes and Piet Hut . 1986. A hierarchical O (N log N) force-calculation algorithm. nature 324, 6096 ( 1986 ), 446--449. Josh Barnes and Piet Hut. 1986. A hierarchical O (N log N) force-calculation algorithm. nature 324, 6096 (1986), 446--449.

4. Diffusion constraints for vector graphics

5. John C Bowers , Jonathan Leahey , and Rui Wang . 2011. A ray tracing approach to diffusion curves . In Computer Graphics Forum , Vol. 30 . Wiley Online Library , 1345--1352. John C Bowers, Jonathan Leahey, and Rui Wang. 2011. A ray tracing approach to diffusion curves. In Computer Graphics Forum, Vol. 30. Wiley Online Library, 1345--1352.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lightning-fast Method of Fundamental Solutions;ACM Transactions on Graphics;2024-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3