A Unified Framework for Sparse Online Learning

Author:

Zhao Peilin1,Wang Dayong2,Wu Pengcheng3,Hoi Steven C. H.4

Affiliation:

1. Tencent AI Lab, Shenzhen, China

2. PathAI, Boston, MA, USA

3. DeepIR, Xiamen, China

4. Singapore Management University, Singapore

Abstract

The amount of data in our society has been exploding in the era of big data. This article aims to address several open challenges in big data stream classification. Many existing studies in data mining literature follow the batch learning setting, which suffers from low efficiency and poor scalability. To tackle these challenges, we investigate a unified online learning framework for the big data stream classification task. Different from the existing online data stream classification techniques, we propose a unified Sparse Online Classification (SOC) framework. Based on SOC, we derive a second-order online learning algorithm and a cost-sensitive sparse online learning algorithm, which could successfully handle online anomaly detection tasks with the extremely unbalanced class distribution. As the performance evaluation, we analyze the theoretical bounds of the proposed algorithms and conduct an extensive set of experiments. The encouraging experimental results demonstrate the efficacy of the proposed algorithms over the state-of-the-art techniques on multiple data stream classification tasks.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online learning from capricious data streams via shared and new feature spaces;Applied Intelligence;2024-07-16

2. Online Learning From Incomplete and Imbalanced Data Streams;IEEE Transactions on Knowledge and Data Engineering;2023-10-01

3. Lifelong Online Learning from Accumulated Knowledge;ACM Transactions on Knowledge Discovery from Data;2023-02-24

4. An effective cost-sensitive sparse online learning framework for imbalanced streaming data classification and its application to online anomaly detection;Knowledge and Information Systems;2022-09-16

5. Incremental Feature Spaces Learning with Label Scarcity;ACM Transactions on Knowledge Discovery from Data;2022-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3