1. Bayer D. Morrison I. Standard bases and geometric invariant theoryI. Initial ideals and state polytopes Journal of Symbolic Computation Volume 6 Issues 2--3 1988. Bayer D. Morrison I. Standard bases and geometric invariant theoryI. Initial ideals and state polytopes Journal of Symbolic Computation Volume 6 Issues 2--3 1988.
2. Bogart T. , Jensen A. N. , Speyer D. , Sturmfels B. , Thomas R. R. Computing Tropical Varieties J. Symb . Comput. 42 ( 2007 ), no. 1 -- 2 Bogart T., Jensen A. N., Speyer D., Sturmfels B., Thomas R. R.Computing Tropical VarietiesJ. Symb. Comput. 42 (2007), no. 1--2
3. Buchberger , B. , Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal) , English translation in J. of Symbolic Computation, Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol. 41 , Number 3--4, Pages 475--511, 2006 Buchberger, B., Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal), English translation in J. of Symbolic Computation, Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol. 41, Number 3--4, Pages 475--511, 2006
4. Caruso , X. , Vaccon T. , Verron T. , Gröbner bases over Tate algebras , in Proceedings: ISSAC 2019 , Beijing, China. Caruso, X., Vaccon T., Verron T., Gröbner bases over Tate algebras, in Proceedings: ISSAC 2019, Beijing, China.
5. Signature-based algorithms for Gröbner bases over tate algebras