1. Lenore Blum , Felipe Cucker , Michael Shub , and Steve Smale . 1998. Complexity and real computation . Springer-Verlag , New York . xvi+453 pages. https://doi.org/10.1007/978--1--4612-0701--6 With a foreword by Richard M. Karp. Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. 1998. Complexity and real computation. Springer-Verlag, New York. xvi+453 pages. https://doi.org/10.1007/978--1--4612-0701--6 With a foreword by Richard M. Karp.
2. Learning algebraic varieties from samples
3. Zongchen Chen and Santosh S. Vempala . 2019 . Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions. In APPROX/ RANDOM 2019 (LIPIcs , Vol. 145), Dimitris Achlioptas and L´aszl´o A. V´egh (Eds.). Schloss Dagstuhl - Leibniz-Zentrum f¨ur Informatik, Wadern, Germany, 64:1--64: 12 . https://doi.org/10.4230/LIPIcs.APPROX-RANDOM. 2019 .64 Zongchen Chen and Santosh S. Vempala. 2019. Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions. In APPROX/ RANDOM 2019 (LIPIcs, Vol. 145), Dimitris Achlioptas and L´aszl´o A. V´egh (Eds.). Schloss Dagstuhl - Leibniz-Zentrum f¨ur Informatik, Wadern, Germany, 64:1--64:12. https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.64
4. Siddhartha Chib and Edward Greenberg . 1995. Understanding the metropolishastings algorithm. The american statistician 49, 4 ( 1995 ), 327--335. https://doi.org/10.1080/00031305.1995.10476177 Siddhartha Chib and Edward Greenberg. 1995. Understanding the metropolishastings algorithm. The american statistician 49, 4 (1995), 327--335. https://doi.org/10.1080/00031305.1995.10476177
5. Log-concave sampling: Metropolis-Hastings algorithms are fast;Dwivedi Raaz;Journal of Machine Learning Research,2019