1. Koszul-type determinantal formulas for families of mixed multilinear systems;Bender M. R.;SIAM Jrnl. on App. AG,2021
2. M.R. Bender , J.-C. Faugère , and E. Tsigaridas . 2018. Towards mixed gröbner basis algorithms: the multihomogeneous and sparse case. ISSAC - 43rd Intern . Symp. on Symbolic & Algebraic Computation. doi: 10 .1145/3 2089 76.3209018. https: //hal.inria.fr/hal-01787423. M.R. Bender, J.-C. Faugère, and E. Tsigaridas. 2018. Towards mixed gröbner basis algorithms: the multihomogeneous and sparse case. ISSAC - 43rd Intern. Symp. on Symbolic & Algebraic Computation. doi: 10.1145/3208976.3209018. https: //hal.inria.fr/hal-01787423.
3. J.F. Canny and I.Z. Emiris. 1993. An efficient algorithm for the sparse mixed resultant. Appl. algebra algebraic algor. & error-correcting codes 673 89--104. J.F. Canny and I.Z. Emiris. 1993. An efficient algorithm for the sparse mixed resultant. Appl. algebra algebraic algor. & error-correcting codes 673 89--104.
4. Efficient Incremental Algorithms for the Sparse Resultant and the Mixed Volume
5. J.F. Canny and P. Pedersen. 1993. An Algorithm for the Newton Resultant. Technical report. Cornell University NY USA. J.F. Canny and P. Pedersen. 1993. An Algorithm for the Newton Resultant. Technical report. Cornell University NY USA.