1. A variant of the Bombieri-Vinogradov theorem with explicit constants and applications
2. ϵ-discrepancy sets and their application for interpolation of sparse polynomials
3. Andrew Arnold , Mark Giesbrecht , and Daniel S. Roche . 2014. Sparse interpolation over finite fields via low-order roots of unity . In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC'14) . Association for Computing Machinery, 27--34. https://doi.org/10.1145/2608628.2608671 Andrew Arnold, Mark Giesbrecht, and Daniel S. Roche. 2014. Sparse interpolation over finite fields via low-order roots of unity. In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC'14). Association for Computing Machinery, 27--34. https://doi.org/10.1145/2608628.2608671
4. Andrew Arnold , Mark Giesbrecht , and Daniel S . Roche . 2015 . Faster sparse multivariate polynomial interpolation of straight-line programs. Journal of Symbolic Computation ( 2015). https://doi.org/10.1016/j.jsc.2015.11.005 Andrew Arnold, Mark Giesbrecht, and Daniel S. Roche. 2015. Faster sparse multivariate polynomial interpolation of straight-line programs. Journal of Symbolic Computation (2015). https://doi.org/10.1016/j.jsc.2015.11.005
5. Andrew Arnold and Daniel S. Roche . 2015. Output-Sensitive Algorithms for Sumset and Sparse Polynomial Multiplication . In Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation ( Bath, United Kingdom) (ISSAC '15). ACM, 29--36. https://doi.org/10.1145/2755996.2756653 Andrew Arnold and Daniel S. Roche. 2015. Output-Sensitive Algorithms for Sumset and Sparse Polynomial Multiplication. In Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation (Bath, United Kingdom) (ISSAC '15). ACM, 29--36. https://doi.org/10.1145/2755996.2756653