Subcubic Equivalences between Graph Centrality Problems, APSP, and Diameter

Author:

Abboud Amir1ORCID,Grandoni Fabrizio2ORCID,Vassilevska Williams Virginia3ORCID

Affiliation:

1. IBM Almaden Research Center, USA

2. IDSIA, USI-SUPSI, Switzerland

3. MIT, USA

Abstract

Measuring the importance of a node in a network is a major goal in the analysis of social networks, biological systems, transportation networks, and so forth. Different centrality measures have been proposed to capture the notion of node importance. For example, the center of a graph is a node that minimizes the maximum distance to any other node (the latter distance is the radius of the graph). The median of a graph is a node that minimizes the sum of the distances to all other nodes. Informally, the betweenness centrality of a node w measures the fraction of shortest paths that have w as an intermediate node. Finally, the reach centrality of a node w is the smallest distance r such that any s - t shortest path passing through w has either s or t in the ball of radius r around w . The fastest known algorithms to compute the center and the median of a graph and to compute the betweenness or reach centrality even of a single node take roughly cubic time in the number n of nodes in the input graph. It is open whether these problems admit truly subcubic algorithms, i.e., algorithms with running time Õ(n 3-δ ) for some constant δ > 0. 1 We relate the complexity of the mentioned centrality problems to two classical problems for which no truly subcubic algorithm is known, namely All Pairs Shortest Paths (APSP) and Diameter. We show that Radius, Median, and Betweenness Centrality are equivalent under subcubic reductions to APSP, i.e., that a truly subcubic algorithm for any of these problems implies a truly subcubic algorithm for all of them. We then show that Reach Centrality is equivalent to Diameter under subcubic reductions. The same holds for the problem of approximating Betweenness Centrality within any finite factor. Thus, the latter two centrality problems could potentially be solved in truly subcubic time, even if APSP required essentially cubic time. On the positive side, our reductions for Reach Centrality imply an improved Õ(Mn ω )-time algorithm for this problem in case of non-negative integer weights upper bounded by M , where ω is a fast matrix multiplication exponent.

Funder

SNSF Excellence

NSF CAREER

BSF

Sloan Research Fellowship and a Google

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investment network and stock’s systemic risk contribution: Evidence from China;The Quarterly Review of Economics and Finance;2024-04

2. Super-Logarithmic Lower Bounds for Dynamic Graph Problems;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3