Taming the Elephants: Affordable Flow Length Prediction in the Data Plane

Author:

Azorin Raphael1ORCID,Monterubbiano Andrea2ORCID,Castellano Gabriele3ORCID,Gallo Massimo3ORCID,Pontarelli Salvatore2ORCID,Rossi Dario3ORCID

Affiliation:

1. Huawei Technologies Co. Ltd & EURECOM, Boulogne-Billancourt (Paris), France

2. University of Rome La Sapienza, Rome, Italy

3. Huawei Technologies Co. Ltd, Boulogne-Billancourt (Paris), France

Abstract

Machine Learning (ML) shows promising potential for enhancing networking tasks by providing early traffic predictions. However, implementing an ML-enabled system is a challenging task due to network devices limited resources. While previous works have shown the feasibility of running simple ML models in the data plane, integrating them into a practical end-to-end system is not an easy task. It requires addressing issues related to resource management and model maintenance to ensure that the performance improvement justifies the system overhead. In this work, we propose DUMBO, a versatile end-to-end system to generate and exploit early flow size predictions at line rate. Our system seamlessly integrates and maintains a simple ML model that offers early coarse-grain flow size prediction in the data plane. We evaluate the proposed system on flow scheduling, per-flow packet inter-arrival time distribution, and flow size estimation using real traffic traces, and perform experiments using an FPGA prototype running on an AMD(R)-Xilinx(R) Alveo U280 SmartNIC. Our results show that DUMBO outperforms traditional state-of-the-art approaches by equipping network devices data planes with a lightweight ML model. Code is available at https://github.com/cpt-harlock/DUMBO.

Publisher

Association for Computing Machinery (ACM)

Reference55 articles.

1. 2006. The MAWI Working Group Traffic Archive. http://mawi.wide.ad.jp/mawi/.

2. 2019. The CAIDA Anonymized Internet Traces Dataset. https://www.caida.org/catalog/datasets/passive_dataset/.

3. 2023. AMD OpenNIC Project. https://github.com/Xilinx/open-nic.

4. 2024. DUMBO Simulator. https://github.com/cpt-harlock/DUMBO

5. 2024. Open Neural Network Exchange (ONNX). https://github.com/onnx/onnx

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3