Verifying Reliability Properties Using the Hyperball Abstract Domain

Author:

Lidman Jacob1,Mckee Sally A.1

Affiliation:

1. Chalmers University of Technology, Gothenburg, Sweden

Abstract

Modern systems are increasingly susceptible to soft errors that manifest themselves as bit flips and possibly alter the semantics of an application. We would like to measure the quality degradation on semantics due to such bit flips, and thus we introduce a Hyperball abstract domain that allows us to determine the worst-case distance between expected and actual results. Similar to intervals, hyperballs describe a connected and dense space. The semantics of low-level code in the presence of bit flips is hard to accurately describe in such a space. We therefore combine the Hyperball domain with an existing affine system abstract domain that we extend to handle bit flips, which are introduce as disjunctions. Bit-flips can reduce the precision of our analysis, and we therefor introduce the Scale domain as a disjunctive refinement to minimize precision loss. This domain bounds the number of disjunctive elements by quantifying the over-approximation of different partitions and uses submodular optimization to find a good partitioning (within a bound of optimal). We evaluate these domains to show benefits and potential problems. For the application we examine here, adding the Scale domain to the Hyperball abstraction improves accuracy by up to two orders of magnitude. Our initial results demonstrate the feasibility of this approach, although we would like to further improve execution efficiency.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Verifying safety and accuracy of approximate parallel programs via canonical sequentialization;Proceedings of the ACM on Programming Languages;2019-10-10

2. Towards a Hybrid Verification Approach;Software Technologies: Applications and Foundations;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3