Learning to crawl

Author:

Pant Gautam1,Srinivasan Padmini2

Affiliation:

1. The University of Utah, Salt Lake City, UT

2. The University of Iowa, Iowa City, IA

Abstract

Topical crawling is a young and creative area of research that holds the promise of benefiting from several sophisticated data mining techniques. The use of classification algorithms to guide topical crawlers has been sporadically suggested in the literature. No systematic study, however, has been done on their relative merits. Using the lessons learned from our previous crawler evaluation studies, we experiment with multiple versions of different classification schemes. The crawling process is modeled as a parallel best-first search over a graph defined by the Web. The classifiers provide heuristics to the crawler thus biasing it towards certain portions of the Web graph. Our results show that Naive Bayes is a weak choice for guiding a topical crawler when compared with Support Vector Machine or Neural Network. Further, the weak performance of Naive Bayes can be partly explained by extreme skewness of posterior probabilities generated by it. We also observe that despite similar performances, different topical crawlers cover subspaces on the Web with low overlap.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Creation of a Pharmaceutical Corpus Based on Open-Data;Computational Linguistics and Intelligent Text Processing;2023

2. An efficient focused crawler using LSTM-CNN based deep learning;International Journal of System Assurance Engineering and Management;2022-12-19

3. Online learning agents for cost-sensitive topical data acquisition from the web;Intelligent Data Analysis;2022-04-18

4. Creating Event-Centric Collections from Web Archives;The Past Web;2021

5. A new similarity measure for vector space models in text classification and information retrieval;Journal of Information Science;2020-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3