Affiliation:
1. Dept. of Computer and Information Science, Linköping University, S-581 83
Abstract
Today’s vehicles are examples of Cyber-Physical Systems (CPS) controlled by a large number of
electronic control units
(ECUs), which manage everything from heating to steering and braking. Due to the increasing complexity and inter-dependency of these units, it has become essential for an ECU to be able to ensure the integrity of the firmware running on other ECU’s to guarantee its own correct operation. Existing solutions for firmware attestation use a centralized approach, which means a single point of failure. In this article, we propose and investigate a decentralized firmware attestation scheme for the automotive domain. The basic idea of this scheme is that each ECU can attest to the state of those ECU’s on which it depends. Two flavors of ECU attestation, i.e., parallel and serial solution, were designed, implemented, and evaluated. The two variants were compared in terms of both detection performance (i.e., the ability to identify unauthorized firmware modifications) and timing performance. Our results show that the proposed scheme is feasible to implement and that the parallel solution showed a significant improvement in timing performance over the serial solution.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献