Scalable signal reconstruction for a broad range of applications

Author:

Asudeh Abolfazl1,Augustine Jees2,Thirumuruganathan Saravanan3,Nazi Azade4,Zhang Nan5,Das Gautam2,Srivastava Divesh6

Affiliation:

1. University of Illinois at Chicago

2. University of Texas at Arlington

3. QCRI, HBKU

4. Google Brain

5. American University

6. AT&T Labs-Research

Abstract

Signal reconstruction problem (SRP) is an important optimization problem where the objective is to identify a solution to an underdetermined system of linear equations that is closest to a given prior. It has a substantial number of applications in diverse areas, such as network traffic engineering, medical image reconstruction, acoustics, astronomy, and many more. Unfortunately, most of the common approaches for solving SRP do not scale to large problem sizes. We propose a novel and scalable algorithm for solving this critical problem. Specifically, we make four major contributions. First, we propose a dual formulation of the problem and develop the DIRECT algorithm that is significantly more efficient than the state of the art. Second, we show how adapting database techniques developed for scalable similarity joins provides a substantial speedup over DIRECT. Third, we describe several practical techniques that allow our algorithm to scale---on a single machine---to settings that are orders of magnitude larger than previously studied. Finally, we use the database techniques of materialization and reuse to extend our result to dynamic settings where the input to the SRP changes. Extensive experiments on real-world and synthetic data confirm the efficiency, effectiveness, and scalability of our proposal.

Funder

National Science Foundation

Army Research Office

AT and T

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference16 articles.

1. Scalable algorithms for signal reconstruction by leveraging similarity joins

2. Leveraging similarity joins for signal reconstruction;Asudeh A.;PVLDB,2018

3. Distinct-value synopses for multiset operations;Beyer K.;Commun. ACM,2009

4. A Primitive Operator for Similarity Joins in Data Cleaning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3