JavaDL: automatically incrementalizing Java bug pattern detection

Author:

Dura Alexandru1ORCID,Reichenbach Christoph1ORCID,Söderberg Emma1ORCID

Affiliation:

1. Lund University, Sweden

Abstract

Static checker frameworks support software developers by automatically discovering bugs that fit general-purpose bug patterns. These frameworks ship with hundreds of detectors for such patterns and allow developers to add custom detectors for their own projects. However, existing frameworks generally encode detectors in imperative specifications, with extensive details of not only what to detect but also how . These details complicate detector maintenance and evolution, and also interfere with the framework’s ability to change how detection is done, for instance, to make the detectors incremental. In this paper, we present JavaDL, a Datalog-based declarative specification language for bug pattern detection in Java code. JavaDL seamlessly supports both exhaustive and incremental evaluation from the same detector specification. This specification allows developers to describe local detector components via syntactic pattern matching , and nonlocal (e.g., interprocedural) reasoning via Datalog-style logical rules . We compare our approach against the well-established SpotBugs and Error Prone tools by re-implementing several of their detectors in JavaDL. We find that our implementations are substantially smaller and similarly effective at detecting bugs on the Defects4J benchmark suite, and run with competitive runtime performance. In our experiments, neither incremental nor exhaustive analysis can consistently outperform the other, which highlights the value of our ability to transparently switch execution modes. We argue that our approach showcases the potential of clear-box static checker frameworks that constrain the bug detector specification language to enable the framework to adapt and enhance the detectors.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An empirical study on bug severity estimation using source code metrics and static analysis;Journal of Systems and Software;2024-11

2. Clog: A Declarative Language for C Static Code Checkers;Proceedings of the 33rd ACM SIGPLAN International Conference on Compiler Construction;2024-02-17

3. PyBugHive: A Comprehensive Database of Manually Validated, Reproducible Python Bugs;IEEE Access;2024

4. JFeature: Know Your Corpus;2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3