Main Memory Database Recovery

Author:

Magalhaes Arlino1,Monteiro Jose Maria2,Brayner Angelo2

Affiliation:

1. Federal University of Ceara/Federal University of Piaui, Piaui, Brazil

2. Federal University of Ceara, Ceara, Brazil

Abstract

Many of today’s applications need massive real-time data processing. In-memory database systems have become a good alternative for these requirements. These systems maintain the primary copy of the database in the main memory to achieve high throughput rates and low latency. However, a database in RAM is more vulnerable to failures than in traditional disk-oriented databases because of the memory volatility. DBMSs implement recovery activities (logging, checkpoint, and restart) for recovery proposes. Although the recovery component looks similar in disk- and memory-oriented systems, these systems differ dramatically in the way they implement their architectural components, such as data storage, indexing, concurrency control, query processing, durability, and recovery. This survey aims to provide a thorough review of in-memory database recovery techniques. To achieve this goal, we reviewed the main concepts of database recovery and architectural choices to implement an in-memory database system. Only then, we present the techniques to recover in-memory databases and discuss the recovery strategies of a representative sample of modern in-memory databases.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MDB-KCP: persistence framework of in-memory database with CRIU-based container checkpoint in Kubernetes;Journal of Cloud Computing;2024-07-25

2. A prefetching indexing scheme for in-memory database systems;Future Generation Computer Systems;2024-07

3. Riveter: Adaptive Query Suspension and Resumption Framework for Cloud Native Databases;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Reliable Networked and Distributed Systems;Dependable Computing;2024-04-26

5. MM-DIRECT;The VLDB Journal;2024-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3