Co-Clustering Structural Temporal Data with Applications to Semiconductor Manufacturing

Author:

Zhu Yada1,He Jingrui2

Affiliation:

1. IBM Research, Yorktown Heights, NY

2. Arizona State University, Temple, AZ

Abstract

Recent years have witnessed data explosion in semiconductor manufacturing due to advances in instrumentation and storage techniques. The large amount of data associated with process variables monitored over time form a rich reservoir of information, which can be used for a variety of purposes, such as anomaly detection, quality control, and fault diagnostics. In particular, following the same recipe for a certain Integrated Circuit device, multiple tools and chambers can be deployed for the production of this device, during which multiple time series can be collected, such as temperature, impedance, gas flow, electric bias, etc. These time series naturally fit into a two-dimensional array (matrix), i.e., each element in this array corresponds to a time series for one process variable from one chamber. To leverage the rich structural information in such temporal data, in this article, we propose a novel framework named C-Struts to simultaneously cluster on the two dimensions of this array. In this framework, we interpret the structural information as a set of constraints on the cluster membership, introduce an auxiliary probability distribution accordingly, and design an iterative algorithm to assign each time series to a certain cluster on each dimension. Furthermore, we establish the equivalence between C-Struts and a generic optimization problem, which is able to accommodate various distance functions. Extensive experiments on synthetic, benchmark, as well as manufacturing datasets demonstrate the effectiveness of the proposed method.

Funder

IBM Research by providing IBM FACULTY AWARD

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3