Optimizing Hyperparameters and Performance Analysis of LSTM Model in Detecting Fake News on Social media

Author:

Rajalaxmi R.R.1,Narasimha Prasad L.V.2,Janakiramaiah B.3,Pavankumar C.S.4,Neelima N.5,Sathishkumar V.E.6

Affiliation:

1. Department of CSE, Kongu Engineering College, Erode, India

2. Institute of Aeronautical Engineering, Hyderabad, Telangana, India

3. Prasad V. Potluri Siddhartha Institute of Technology, Vijayawada, Andhra Pradesh, India

4. Information Technology, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada, Andhra Pradesh, India

5. Department of Information Technology, RVR & JC College of Engineering, Guntur, Chowdavaram, Andhra Pradesh, India

6. Department of Industrial Engineering, Hanyang University, Seoul, Republic of Korea

Abstract

Fake news detection recently received a lot of attention from the scientific community and demands an optimal solution with high efficiency. Several studies were conducted using unsupervised and supervised learning techniques to address the fake news identification problem. These studies, on the other hand, have some limitations like inefficient model design, improper pre-processing, and poor accuracy. Some factors contributing to poor accuracy include irrelevant features, improper model parameters, imbalanced datasets, and so on. This work proposes an optimized deep learning model for detecting fake news. The developed model uses Long Short-Term Memory (LSTM) to classify fake and real news and utilizes hyperparameter tuning methods such as grid search and random search to customize the hyperparameters of the model. The experimental results indicate that the optimized LSTM model yields 99.65% accuracy using the ISOT dataset and 45.23% accuracy using the LIAR dataset.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference24 articles.

1. Vasu Agarwal , H. Parveen Sultana , Srijan Malhotra , and Amitrajit Sarkar . 2019. Analysis of Classifiers for Fake News Detection . In Procedia Computer Science , Elsevier B.V. , 377–383. DOI:https://doi.org/10.1016/j.procs.2020.01.035 Vasu Agarwal, H. Parveen Sultana, Srijan Malhotra, and Amitrajit Sarkar. 2019. Analysis of Classifiers for Fake News Detection. In Procedia Computer Science, Elsevier B.V., 377–383. DOI:https://doi.org/10.1016/j.procs.2020.01.035

2. Detecting opinion spams and fake news using text classification

3. Automatically Identifying Fake News in Popular Twitter Threads

4. An incentive-aware blockchain-based solution for internet of fake media things

5. Pedro Henrique Arruda Faustini and Thiago Ferreira Covões. 2020. Fake news detection in multiple platforms and languages. Expert Syst. Appl. 158 (2020) 113503. DOI:https://doi.org/10.1016/j.eswa.2020.113503 Pedro Henrique Arruda Faustini and Thiago Ferreira Covões. 2020. Fake news detection in multiple platforms and languages. Expert Syst. Appl. 158 (2020) 113503. DOI:https://doi.org/10.1016/j.eswa.2020.113503

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3