Affiliation:
1. Rochester Institute of Technology, Rochester, NY
2. University of Oxford, Oxford, UK
3. University of Rochester, Rochester, NY
Abstract
We study the problem of approximating the value of the matching polynomial on graphs with edge parameter γ, where γ takes arbitrary values in the complex plane.
When γ is a positive real, Jerrum and Sinclair showed that the problem admits an FPRAS on general graphs. For general complex values of γ, Patel and Regts, building on methods developed by Barvinok, showed that the problem admits an FPTAS on graphs of maximum degree Δ as long as γ is not a negative real number less than or equal to −1/(4(Δ −1)). Our first main result completes the picture for the approximability of the matching polynomial on bounded degree graphs. We show that for all Δ ≥ 3 and all real γ less than −1/(4(Δ −1)), the problem of approximating the value of the matching polynomial on graphs of maximum degree Δ with edge parameter γ is #P-hard.
We then explore whether the maximum degree parameter can be replaced by the connective constant. Sinclair et al. showed that for positive real γ, it is possible to approximate the value of the matching polynomial using a correlation decay algorithm on graphs with bounded connective constant (and potentially unbounded maximum degree). We first show that this result does not extend in general in the complex plane; in particular, the problem is #P-hard on graphs with bounded connective constant for a dense set of γ values on the negative real axis. Nevertheless, we show that the result does extend for any complex value γ that does not lie on the negative real axis. Our analysis accounts for complex values of γ using geodesic distances in the complex plane in the metric defined by an appropriate density function.
Funder
European Research Council
NSF
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Theory and Mathematics,Theoretical Computer Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献