High-performance fractal coherence

Author:

Voskuilen Gwendolyn1,Vijaykumar T.N.1

Affiliation:

1. Purdue University, West Lafayette, IN, USA

Abstract

Bugs in cache coherence protocols can cause system failures. Despite many advances, verification runs into state explosion for even moderately-sized systems. As multicores' core counts increase, coherence verifiability continues to be a key problem. A recent proposal, called fractal coherence, avoids the state explosion problem by applying the idea of observational equivalence between a larger system and its smaller sub-systems. A fractal protocol for a larger system is verified by design if a minimal sub-system is verified completely. While fractal coherence is a significant step forward, there are two shortcomings: (1) Architectural limitation: To achieve fractal coherence's logical hierarchy, TreeFractal, the specific fractal protocol, employs a tree architecture where each miss traverses many levels up and down the tree and each level redundantly holds its sub-trees' coherence tags. (2) Protocol restrictions: TreeFractal imposes a restriction on responses to read requests that forces read requests to obtain clean blocks from the nearest sharer even if the shared L2 or L3 is faster. These limitations impose significant performance and coherence tag state overheads. In this paper, we propose architectural support for coherence protocols to achieve scalable performance and verifiability. To address the architectural limitation, we propose FlatFractal, a directory-based architecture which decouples fractal coherence's logical hierarchy from the architecture and eliminates redundant tag state. To address the protocol restriction, we propose a simple change to the protocol that, while preserving observational equivalence, allows read requests to obtain the blocks from the shared L2 or L3. Our simulations show that for 16 cores, FlatFractal performs, on average, 57% better than TreeFractal and within 3% of a conventional directory.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference34 articles.

1. Open source development labs database test suite 2 v0.40 http://osdldbt.sourceforge.net/. Open source development labs database test suite 2 v0.40 http://osdldbt.sourceforge.net/.

2. Postgresql. v9.2.0. http://www.postgresql.org/. Postgresql. v9.2.0. http://www.postgresql.org/.

3. The standard performance evaluation corporation. SPECjbb2005 suite. http://www.spec.org/jbb2005/. The standard performance evaluation corporation. SPECjbb2005 suite. http://www.spec.org/jbb2005/.

4. AMD. Revision Guide for AMD Family 14H Models 00h-0Fh Processors revision 3. 18. February 2013. AMD. Revision Guide for AMD Family 14H Models 00h-0Fh Processors revision 3. 18. February 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3