SI-TM

Author:

Litz Heiner1,Cheriton David1,Firoozshahian Amin2,Azizi Omid2,Stevenson John P.1

Affiliation:

1. Stanford University, Stanford, CA, USA

2. HICAMP Systems, Menlo Park, CA, USA

Abstract

Transactional memory represents an attractive conceptual model for programming concurrent applications. Unfortunately, high transaction abort rates can cause significant performance degradation. Conventional transactional memory realizations not only pessimistically abort transactions on every read-write conflict but also because of false sharing, cache evictions, TLB misses, page faults and interrupts. Consequently, the use of transactions needs to be restricted to a very small number of operations to achieve predictable performance, thereby, limiting its benefit to programming simplification. In this paper, we investigate snapshot isolation transactional memory in which transactions operate on memory snapshots that always guarantee consistent reads. By exploiting snapshots, an established database model of transactions, transactions can ignore read-write conflicts and only need to abort on write-write conflicts. Our implementation utilizes a memory controller that supports multiversion memory, to efficiently support snapshotting in hardware.We show that snapshot isolation can reduce the number of aborts in some cases by three orders of magnitude and improve performance by up to 20x.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference60 articles.

1. A.R. Adl-Tabatabai and T. Shpeisman. Draft specification of transactional language constructs for c A.R. Adl-Tabatabai and T. Shpeisman. Draft specification of transactional language constructs for c

2. Unbounded Transactional Memory

3. Steal-on-Abort: Improving Transactional Memory Performance through Dynamic Transaction Reordering

4. Hardware Support for Relaxed Concurrency Control in Transactional Memory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Parallel Snapshot Isolation and Release/Acquire Consistency;Programming Languages and Systems;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3