Midas

Author:

Deng Kaikai1ORCID,Zhao Dong1ORCID,Han Qiaoyue1ORCID,Zhang Zihan1ORCID,Wang Shuyue1ORCID,Zhou Anfu1ORCID,Ma Huadong1ORCID

Affiliation:

1. State Key Laboratory of Network and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China

Abstract

Millimeter wave radar is a promising sensing modality for enabling pervasive and privacy-preserving human sensing. However, the lack of large-scale radar datasets limits the potential of training deep learning models to achieve generalization and robustness. To close this gap, we resort to designing a software pipeline that leverages wealthy video repositories to generate synthetic radar data, but it confronts key challenges including i) multipath reflection and attenuation of radar signals among multiple humans, ii) unconvertible generated data leading to poor generality for various applications, and iii) the class-imbalance issue of videos leading to low model stability. To this end, we design Midas to generate realistic, convertible radar data from videos via two components: (i) a data generation network (DG-Net) combines several key modules, depth prediction, human mesh fitting and multi-human reflection model, to simulate the multipath reflection and attenuation of radar signals to output convertible coarse radar data, followed by a Transformer model to generate realistic radar data; (ii) a variant Siamese network (VS-Net) selects key video clips to eliminate data redundancy for addressing the class-imbalance issue. We implement and evaluate Midas with video data from various external data sources and real-world radar data, demonstrating its great advantages over the state-of-the-art approach for both activity recognition and object detection tasks.

Funder

111 Project

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference82 articles.

1. Sami Abu-El-Haija , Nisarg Kothari , Joonseok Lee , Paul Natsev , George Toderici , Balakrishnan Varadarajan , and Sudheendra Vijaya-narasimhan. 2016. Youtube-8m: A large-scale video classification benchmark. arXiv preprint arXiv:1609.08675 ( 2016 ). Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici, Balakrishnan Varadarajan, and Sudheendra Vijaya-narasimhan. 2016. Youtube-8m: A large-scale video classification benchmark. arXiv preprint arXiv:1609.08675 (2016).

2. Ok Google, What Am I Doing? Acoustic Activity Recognition Bounded by Conversational Assistant Interactions;Adaimi Rebecca;Proc. of ACM IMWUT,2021

3. Karan Ahuja , Yue Jiang , Mayank Goel , and Chris Harrison . 2021 . Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition . In Proc. of CHI. 1--10 . Karan Ahuja, Yue Jiang, Mayank Goel, and Chris Harrison. 2021. Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition. In Proc. of CHI. 1--10.

4. The shortest path through many points

5. Luca Bertinetto , Jack Valmadre , Joao F Henriques , Andrea Vedaldi , and Philip HS Torr . 2016 . Fully-convolutional siamese networks for object tracking . In Proc. of ECCV. 850--865 . Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr. 2016. Fully-convolutional siamese networks for object tracking. In Proc. of ECCV. 850--865.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. M4X: Enhancing Cross-View Generalizability in RF-Based Human Activity Recognition by Exploiting Synthetic Data in Metric Learning;2024 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE);2024-06-19

2. SIMFALL: A Data Generator for RF-Based Fall Detection;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

3. LoCal;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2023-12-19

4. RF Genesis: Zero-Shot Generalization of mmWave Sensing through Simulation-Based Data Synthesis and Generative Diffusion Models;Proceedings of the 21st ACM Conference on Embedded Networked Sensor Systems;2023-11-12

5. Midas++: Generating Training Data of Mmwave Radars From Videos for Privacy-Preserving Human Sensing With Mobility;IEEE Transactions on Mobile Computing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3