Affiliation:
1. University of Edinburgh, United Kingdom
Abstract
Determining the best set of optimizations to apply to a program has been a long standing problem for compiler writers. To reduce the complexity of this task, existing approaches typically apply the same set of optimizations to all procedures within a program, without regard to their particular structure. This paper develops a new method-specific approach that automatically selects the best optimizations on a per method basis within a dynamic compiler. Our approach uses the machine learning technique of logistic regression to automatically derive a predictive model that determines which optimizations to apply based on the features of a method. This technique is implemented in the Jikes RVM Java JIT compiler. Using this approach we reduce the average total execution time of the SPECjvm98 benchmarks by 29%. When the same heuristic is applied to the DaCapo+ benchmark suite, we obtain an average 33% reduction over the default level O2 setting.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献