Concepts

Author:

Gregor Douglas1,Järvi Jaakko2,Siek Jeremy3,Stroustrup Bjarne2,Dos Reis Gabriel2,Lumsdaine Andrew1

Affiliation:

1. Indiana University

2. Texas A&M University

3. Rice University

Abstract

Generic programming has emerged as an important technique for the development of highly reusable and efficient software libraries. In C++, generic programming is enabled by the flexibility of templates, the C++ type parametrization mechanism. However, the power of templates comes with a price: generic (template) libraries can be more difficult to use and develop than non-template libraries and their misuse results in notoriously confusing error messages. As currently defined in C++98, templates are unconstrained, and type-checking of templates is performed late in the compilation process, i.e., after the use of a template has been combined with its definition. To improve the support for generic programming in C++, we introduce concepts to express the syntactic and semantic behavior of types and to constrain the type parameters in a C++ template. Using concepts, type-checking of template definitions is separated from their uses, thereby making templates easier to use and easier to compile. These improvements are achieved without limiting the flexibility of templates or decreasing their performance - in fact their expressive power is increased. This paper describes the language extensions supporting concepts, their use in the expression of the C++ Standard Template Library, and their implementation in the ConceptGCC compiler. Concepts are candidates for inclusion in the upcoming revision of the ISO C++ standard, C++0x.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference58 articles.

1. Professional Computing Series;Austern Matthew H.,1998

2. Signatures: A language extension for improving type abstraction and subtype polymorphism in C++

3. Boost. Boost C++ L ibraries. http://www.boost.org/.]] Boost. Boost C++ L ibraries. http://www.boost.org/.]]

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3