Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees

Author:

Riondato Matteo1,Upfal Eli1

Affiliation:

1. Brown University, USA

Abstract

The tasks of extracting (top- K ) Frequent Itemsets (FIs) and Association Rules (ARs) are fundamental primitives in data mining and database applications. Exact algorithms for these problems exist and are widely used, but their running time is hindered by the need of scanning the entire dataset, possibly multiple times. High-quality approximations of FIs and ARs are sufficient for most practical uses. Sampling techniques can be used for fast discovery of approximate solutions, but works exploring this technique did not provide satisfactory performance guarantees on the quality of the approximation due to the difficulty of bounding the probability of under- or oversampling any one of an unknown number of frequent itemsets. We circumvent this issue by applying the statistical concept of Vapnik-Chervonenkis (VC) dimension to develop a novel technique for providing tight bounds on the sample size that guarantees approximation of the (top- K ) FIs and ARs within user-specified parameters. The resulting sample size is linearly dependent on the VC-dimension of a range space associated with the dataset. We analyze the VC-dimension of this range space and show that it is upper bounded by an easy-to-compute characteristic quantity of the dataset, the d-index , namely, the maximum integer d such that the dataset contains at least d transactions of length at least d such that no one of them is a superset of or equal to another. We show that this bound is tight for a large class of datasets. The resulting sample size is a significant improvement over previous known results. We present an extensive experimental evaluation of our technique on real and artificial datasets, demonstrating the practicality of our methods, and showing that they achieve even higher quality approximations than what is guaranteed by the analysis.

Funder

Division of Information and Intelligent Systems

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scalable Rule Lists Learning with Sampling;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. A scalable and flexible basket analysis system for big transaction data in Spark;Information Processing & Management;2024-03

3. To Determine LDL Phenotypes Using Lipids, Lipoproteins, Apoproteins, and sdLDL Through Association Rule Mining;Journal of Clinical Practice and Research;2024

4. SILVAN : Estimating Betweenness Centralities with Progressive Sampling and Non-uniform Rademacher Bounds;ACM Transactions on Knowledge Discovery from Data;2023-12-09

5. A Clique-Querying Mining Framework for Discovering High Utility Co-Location Patterns without Generating Candidates;ACM Transactions on Knowledge Discovery from Data;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3