Exploring the Correlation between Emojis and Mood Expression in Thai Twitter Discourse

Author:

Rutherford Attapol1ORCID,Akarajaradwong Pawitsapak1ORCID

Affiliation:

1. Linguistics, Chulalongkorn University, Bangkok, Thailand

Abstract

Mood, a long-lasting affective state detached from specific stimuli, plays an important role in behavior. Although sentiment analysis and emotion classification have garnered attention, research on mood classification remains in its early stages. This study adopts a two-dimensional structure of affect, comprising ”pleasantness” and ”activation,” to classify mood patterns. Emojis, graphic symbols representing emotions and concepts, are widely used in computer-mediated communication. Unlike previous studies that consider emojis as direct labels for emotion or sentiment, this work uses a pre-trained large language model which integrates both text and emojis to develop a mood classification model. Our contributions are three-fold. First, we annotate 10,000 Thai tweets with mood to train the models and release the dataset to the public. Second, we show that emojis contribute to determining mood to a lesser extent than text, far from mapping directly to mood. Third, through the application of the trained model, we observe the correlation of moods during the Thai political turmoil of 2019-2020 on Thai Twitter and find a significant correlation. These moods closely reflect the news events and reveal one side of Thai public opinion during the turmoil.

Publisher

Association for Computing Machinery (ACM)

Reference38 articles.

1. An Efficient Classification Algorithm for Music Mood Detection in Western and Hindi Music Using Audio Feature Extraction

2. Tom B. Brown Benjamin Mann Nick Ryder Melanie Subbiah Jared Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray Benjamin Chess Jack Clark Christopher Berner Sam McCandlish Alec Radford Ilya Sutskever and Dario Amodei. 2020. Language Models are Few-Shot Learners. CoRR abs/2005.14165(2020). arXiv:2005.14165 https://arxiv.org/abs/2005.14165

3. Andrea Ceron, Luigi Curini, Stefano M Iacus, and Giuseppe Porro. 2014. Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens’ political preferences with an application to Italy and France. New media & society 16, 2 (2014), 340–358.

4. Alyssa Gosteli Dela Cruz, Ta-Wei Chu, Sung Jae Lee, and Chuenthip Nithimasarad. 2022. Explaining Thailand’s Politicised COVID-19 Containment Strategies: Securitisation, Counter-Securitisation, and Re-Securitisation. Journal of Current Southeast Asian Affairs(2022), 18681034221099303.

5. Petra Desatova and Saowanee T Alexander. 2021. Election commissions and non-democratic outcomes: Thailand’s contentious 2019 election. Politics (2021), 02633957211000978.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3