A Deep Learning Approach for Identifying User Communities Based on Geographical Preferences and Its Applications to Urban and Environmental Planning

Author:

Ferreira Danielle L.1ORCID,Nunes Bruno A. A.2,Campos Carlos Alberto V.3ORCID,Obraczka Katia1

Affiliation:

1. University of California Santa Cruz (UCSC), Santa Cruz - USA

2. University of California San Francisco (UCSF)

3. Federal University of State of Rio de Janeiro (UNIRIO), Brazil

Abstract

Understanding human mobility plays a vital role in urban and environmental planning as cities continue to grow. Ubiquitous geo-location, localization technology, and availability of big-data-ready computing infrastructure have enabled the development of more sophisticated models to characterize human mobility in urban areas. In this work, our main goal is to extract spatio-temporal features that characterize user mobility and, based on the similarity of these features, identify user communities . To this end, we propose a novel approach that leverages image processing techniques to represent user geographical preferences as images and then apply deep convolutional autoencoders to extract latent spatio-temporal mobility features from these images. These features are then fed to a clustering algorithm that identifies the underlying community structures. We use a diverse urban mobility dataset to validate the proposed framework. Our results show that the proposed framework is able to significantly increase the similarity between intra-community nodes (by up to 107%) as well as dissimilarity between inter-community nodes (up to 54%) when compared against no pre-processing of the datasets, i.e without pre-processing the datasets through any feature fusion method. Moreover, it was also able to reach up to 100% improvement when compared against community identification using Principal Component Analysis (PCA). Our results also show that the proposed approach yields significant increase in contact time amongst users belonging to the same community, by up to 80% when compared to the average contact time when not considering community structures, and by up to 150% when compared to the baseline. To the best of our knowledge, our proposal is the first to consider deep convolutional autoencoding to perform automatic extraction of non-linear spatio-temporal mobility features characterizing individual users from raw mobility datasets with the goal of identifying user communities.

Funder

Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001

US National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Federated Learning assisted framework to periodically identify user communities in urban space;Ad Hoc Networks;2024-10

2. Survey of Federated Learning Models for Spatial-Temporal Mobility Applications;ACM Transactions on Spatial Algorithms and Systems;2024-07-13

3. Analysing Fairness of Privacy-Utility Mobility Models;Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing;2023-10-08

4. Classifying habitat characteristics of wetlands using a self-organizing map;Ecological Informatics;2023-07

5. Geo-Tile2Vec: A Multi-Modal and Multi-Stage Embedding Framework for Urban Analytics;ACM Transactions on Spatial Algorithms and Systems;2023-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3