Stochastic Approximation for Estimating the Price of Stability in Stochastic Nash Games

Author:

Jalilzadeh Afrooz1,Yousefian Farzad2,Ebrahimi Mohammadjavad2

Affiliation:

1. University of Arizona, USA

2. Rutgers University, USA

Abstract

The goal in this paper is to approximate the Price of Stability (PoS) in stochastic Nash games using stochastic approximation (SA) schemes. PoS is amongst the most popular metrics in game theory and provides an avenue for estimating the efficiency of Nash games. In particular, knowing the value of PoS can help with designing efficient networked systems, including transportation networks and power market mechanisms. Motivated by the absence of efficient methods for computing the PoS, first we consider stochastic optimization problems with a nonsmooth and merely convex objective function and a merely monotone stochastic variational inequality (SVI) constraint. This problem appears in the numerator of the PoS ratio. We develop a randomized block-coordinate stochastic extra-(sub)gradient method where we employ a novel iterative penalization scheme to account for the mapping of the SVI in each of the two gradient updates of the algorithm. We obtain an iteration complexity of the order ϵ − 4 that appears to be best known result for this class of constrained stochastic optimization problems, where ϵ denotes an arbitrary bound on suitably defined infeasibility and suboptimality metrics. Second, we develop an SA-based scheme for approximating the PoS and derive lower and upper bounds on the approximation error. To validate the theoretical findings, we provide preliminary simulation results on a networked stochastic Nash Cournot competition.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

Reference42 articles.

1. The price of stability for network design with fair cost allocation;Anshelevich A.;SIAM Journal on Computing,2008

2. D. P. Bertsekas , Nonlinear programming , Journal of the Operational Research Society 48 ( 1997 ), no.  3 , 334–334. D. P. Bertsekas, Nonlinear programming, Journal of the Operational Research Society 48 (1997), no. 3, 334–334.

3. D. P. Bertsekas , A.  Nedić, and A.   Ozdaglar , Convex analysis and optimization, vol. 1 , Athena Scientific , 2003 . D. P. Bertsekas, A. Nedić, and A. Ozdaglar, Convex analysis and optimization, vol. 1, Athena Scientific, 2003.

4. M.  Broadie , D.   M. Cicek , and A.   Zeevi , Multidimensional stochastic approximation: Adaptive algorithms and applications , ACM Transactions on Modeling and Computer Simulation (TOMACS) 24 ( 2014 ), no. 1, 1–28. M. Broadie, D. M. Cicek, and A. Zeevi, Multidimensional stochastic approximation: Adaptive algorithms and applications, ACM Transactions on Modeling and Computer Simulation (TOMACS) 24 (2014), no. 1, 1–28.

5. The subgradient extragradient method for solving variational inequalities in hilbert space;Censor A.;Journal of Optimization Theory and Applications,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3