The Real-Time Linux Kernel

Author:

Reghenzani Federico1ORCID,Massari Giuseppe1,Fornaciari William1

Affiliation:

1. Politecnico di Milano, Milano, Italy

Abstract

The increasing functional and nonfunctional requirements of real-time applications, the advent of mixed criticality computing, and the necessity of reducing costs are leading to an increase in the interest for employing COTS hardware in real-time domains. In this scenario, the Linux kernel is emerging as a valuable solution on the software side, thanks to the rich support for hardware devices and peripherals, along with a well-established programming environment. However, Linux has been developed as a general-purpose operating system, followed by several approaches to introduce actual real-time capabilities in the kernel. Among these, the PREEMPT_RT patch, developed by the kernel maintainers, has the goal to increase the predictability and reduce the latencies of the kernel directly modifying the existent kernel code. This article aims at providing a survey of the state-of-the-art approaches for building real-time Linux-based systems, with a focus on PREEMPT_RT, its evolution, and the challenges that should be addressed in order to move PREEMPT_RT one step ahead. Finally, we present some applications and use cases that have already benefited from the introduction of this patch.

Funder

EU H2020 RECIPE project

EU H2020 MANGO project

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ROS2 Real-time Performance Optimization and Evaluation;Chinese Journal of Mechanical Engineering;2023-12-04

2. Flow based containerized honeypot approach for network traffic analysis: An empirical study;Computer Science Review;2023-11

3. Flexible, scalable, and robust architecture for industrial automation applications with real-time requirements;2023 IEEE 6th Colombian Conference on Automatic Control (CCAC);2023-10-17

4. Container-based Virtualization for Real-time Industrial Systems—A Systematic Review;ACM Computing Surveys;2023-10-05

5. Supporting vPLC Networking over TSN with Kubernetes in Industry 4.0;Proceedings of the 1st Workshop on Enhanced Network Techniques and Technologies for the Industrial IoT to Cloud Continuum;2023-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3