Model-driven generative framework for automated OMG DDS performance testing in the cloud

Author:

An Kyoungho1,Kuroda Takayuki1,Gokhale Aniroddha1,Tambe Sumant2,Sorbini Andrea2

Affiliation:

1. Vanderbilt University, Nashville, TN, USA

2. RTI, Sunnyvale, CA, USA

Abstract

The Object Management Group's (OMG) Data Distribution Service (DDS) provides many configurable policies which determine end-to-end quality of service (QoS) of applications. It is challenging to predict the system's performance in terms of latencies, throughput, and resource usage because diverse combinations of QoS configurations influence QoS of applications in different ways. To overcome this problem, design-time formal methods have been applied with mixed success, but lack of sufficient accuracy in prediction, tool support, and understanding of formalism has prevented wider adoption of the formal techniques. A promising approach to address this challenge is to emulate system behavior and gather data on the QoS parameters of interest by experimentation. To realize this approach, which is preferred over formal methods due to their limitations in accurately predicting QoS, we have developed a model-based automatic performance testing framework with generative capabilities to reduce manual efforts in generating a large number of relevant QoS configurations that can be deployed and tested on a cloud platform. This paper describes our initial efforts in developing and using this technology.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference4 articles.

1. The many faces of publish/subscribe

2. A QoS policy configuration modeling language for publish/subscribe middleware platforms

3. Expertus: A Generator Approach to Automate Performance Testing in IaaS Clouds

4. Object Management Group. Data Distribution Service for Real-time Systems Specification 1.2 edition January 2007. Object Management Group. Data Distribution Service for Real-time Systems Specification 1.2 edition January 2007.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3