State-of-the-art in string similarity search and join

Author:

Wandelt Sebastian1,Deng Dong2,Gerdjikov Stefan3,Mishra Shashwat4,Mitankin Petar5,Patil Manish6,Siragusa Enrico7,Tiskin Alexander8,Wang Wei9,Wang Jiaying10,Leser Ulf1

Affiliation:

1. Knowledge Management in Bioinformatics, HU Berlin, Berlin, Germany

2. Tsinghua University, Beijing, China

3. FMI Sofia University, Sofia, Bulgaria

4. Special Interest Group in Data, IIT Kanpur, Kanpur, India

5. IICT Bulgarian Academy of Sciences, FMI Sofia University, Sofia, Bulgaria

6. Louisiana State University, Louisiana, USA

7. Algorithmic Bioinformatics, FU Berlin, Berlin, Germany

8. Department of Computer Science, University of Warwick, United Kingdom

9. University of New South Wales, New South Wales, Australia

10. Northeastern University Shenyang, China

Abstract

String similarity search and its variants are fundamental problems with many applications in areas such as data integration, data quality, computational linguistics, or bioinformatics. A plethora of methods have been developed over the last decades. Obtaining an overview of the state-of-the-art in this field is difficult, as results are published in various domains without much cross-talk, papers use different data sets and often study subtle variations of the core problems, and the sheer number of proposed methods exceeds the capacity of a single research group. In this paper, we report on the results of the probably largest benchmark ever performed in this field. To overcome the resource bottleneck, we organized the benchmark as an international competition, a workshop at EDBT/ICDT 2013. Various teams from different fields and from all over the world developed or tuned programs for two crisply defined problems. All algorithms were evaluated by an external group on two machines. Altogether, we compared 14 different programs on two string matching problems (k-approximate search and k-approximate join) using data sets of increasing sizes and with different characteristics from two different domains. We compare programs primarily by wall clock time, but also provide results on memory usage, indexing time, batch query effects and scalability in terms of CPU cores. Results were averaged over several runs and confirmed on a second, different hardware platform. A particularly interesting observation is that disciplines can and should learn more from each other, with the three best teams rooting in computational linguistics, databases, and bioinformatics, respectively.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference32 articles.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3