Graph stream algorithms

Author:

McGregor Andrew1

Affiliation:

1. University of Massachusetts

Abstract

Over the last decade, there has been considerable interest in designing algorithms for processing massive graphs in the data stream model. The original motivation was two-fold: a) in many applications, the dynamic graphs that arise are too large to be stored in the main memory of a single machine and b) considering graph problems yields new insights into the complexity of stream computation. However, the techniques developed in this area are now finding applications in other areas including data structures for dynamic graphs, approximation algorithms, and distributed and parallel computation. We survey the state-of-the-art results; identify general techniques; and highlight some simple algorithms that illustrate basic ideas.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference62 articles.

1. Graph Sparsification in the Semi-streaming Model

2. K. J. Ahn and S. Guha. Access to data and number of iterations: Dual primal algorithms for maximum matching under resource constraints. CoRR abs/1307.4359 2013. K. J. Ahn and S. Guha. Access to data and number of iterations: Dual primal algorithms for maximum matching under resource constraints. CoRR abs/1307.4359 2013.

3. Linear programming in the semi-streaming model with application to the maximum matching problem

Cited by 208 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. D3-GNN: Dynamic Distributed Dataflow for Streaming Graph Neural Networks;Proceedings of the VLDB Endowment;2024-07

2. Parameterized Complexity of Streaming Diameter and Connectivity Problems;Algorithmica;2024-06-19

3. Streaming Graph Algorithms in the Massively Parallel Computation Model;Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing;2024-06-17

4. Incremental Sliding Window Connectivity over Streaming Graphs;Proceedings of the VLDB Endowment;2024-06

5. On Querying Historical Connectivity in Temporal Graphs;Proceedings of the ACM on Management of Data;2024-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3