Entropy-based bounds for online algorithms

Author:

Pandurangan Gopal1,Upfal Eli2

Affiliation:

1. Purdue University, West Lafayette, IN

2. Brown University, Providence, RI

Abstract

We focus in this work on an aspect of online computation that is not addressed by standard competitive analysis, namely, identifying request sequences for which nontrivial online algorithms are useful versus request sequences for which all algorithms perform equally poorly. The motivations for this work are advanced system and architecture designs which allow the operating system to dynamically allocate resources to online protocols such as prefetching and caching. To utilize these features, the operating system needs to identify data streams that can benefit from more resources. Our approach in this work is based on the relation between entropy, compression, and gambling, extensively studied in information theory. It has been shown that in some settings, entropy can either fully or at least partially characterize the expected outcome of an iterative gambling game. Our goal is to study the extent to which the entropy of the input characterizes the expected performance of online algorithms for problems that arise in computer applications. We study bounds based on entropy for three classical online problems---list accessing, prefetching, and caching. Our bounds relate the performance of the best online algorithm to the entropy , a parameter intrinsic to characteristics of the request sequence. This is in contrast to the competitive ratio parameter of competitive analysis, which quantifies the performance of the online algorithm with respect to an optimal offline algorithm. For the prefetching problem, we give explicit upper and lower bounds for the performance of the best prefetching algorithm in terms of the entropy of the request sequence. In contrast, we show that the entropy of the request sequence alone does not fully capture the performance of online list accessing and caching algorithms.

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Information Entropy-Based Housing Spatiotemporal Dependence;The Journal of Real Estate Finance and Economics;2017-09-29

2. The Complexity of Paging Against a Probabilistic Adversary;Lecture Notes in Computer Science;2016

3. A Universal Online Caching Algorithm Based on Pattern Matching;Algorithmica;2008-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3