Knowledge Discovery of News Text Based on Artificial Intelligence

Author:

Guangce Ruan1,Lei Xia2

Affiliation:

1. Information Management Department, East China Normal University, Minhang, Shanghai, China

2. Lecture & Exhibition Center, Shanghai Library, Huai Hai Zhong Lu, Shanghai, China

Abstract

The explosion of news text and the development of artificial intelligence provide a new opportunity and challenge to provide high-quality media monitoring service. In this article, we propose a semantic analysis approach based on the Latent Dirichlet Allocation (LDA) and Apriori algorithm, and we realize application to improve media monitoring reports by mining large-scale news text. First, we propose to use LDA model to mine news text topic words and reducing news dimensionality. Then, we propose to use Apriori algorithm to discovering the relationship of topic words. Finally, we discovery the relevance of news text topic words and show the intensity and dependency among topic words through drawing. This application can realize to extract the news topics and discover the correlation and dependency among news topics in mass news text. The results show that the method based on LDA and Apriori can help the media monitoring staff to better understand the hidden knowledge in the news text and improve the media analysis report.

Funder

Philosophy and Social Science Foundation of Shanghai

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference30 articles.

1. Subtopic division in news topic based on latent dirichlet allocation;Zhao;J. Chinese Comput. Syst.,2013

2. Text mining: information analysis method for the social science. Library Info;Bingsi Fan;Service,2012

3. Pattern recognition and machine learning;Bishop Christopher M.;J. Electr. Imag.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3