Hardbound

Author:

Devietti Joe1,Blundell Colin2,Martin Milo M. K.2,Zdancewic Steve2

Affiliation:

1. University of Washington, Seattle, WA

2. University of Pennsylvania, Philadelphia, PA

Abstract

The C programming language is at least as well known for its absence of spatial memory safety guarantees (i.e., lack of bounds checking) as it is for its high performance. C's unchecked pointer arithmetic and array indexing allow simple programming mistakes to lead to erroneous executions, silent data corruption, and security vulnerabilities. Many prior proposals have tackled enforcing spatial safety in C programs by checking pointer and array accesses. However, existing software-only proposals have significant drawbacks that may prevent wide adoption, including: unacceptably high run-time overheads, lack of completeness, incompatible pointer representations, or need for non-trivial changes to existing C source code and compiler infrastructure. Inspired by the promise of these software-only approaches, this paper proposes a hardware bounded pointer architectural primitive that supports cooperative hardware/software enforcement of spatial memory safety for C programs. This bounded pointer is a new hardware primitive datatype for pointers that leaves the standard C pointer representation intact, but augments it with bounds information maintained separately and invisibly by the hardware. The bounds are initialized by the software, and they are then propagated and enforced transparently by the hardware, which automatically checks a pointer's bounds before it is dereferenced. One mode of use requires instrumenting only malloc, which enables enforcement of perallocation spatial safety for heap-allocated objects for existing binaries. When combined with simple intraprocedural compiler instrumentation, hardware bounded pointers enable a low-overhead approach for enforcing complete spatial memory safety in unmodified C programs.

Publisher

Association for Computing Machinery (ACM)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EPIC: Efficient and Proactive Instruction-level Cyberdefense;Proceedings of the Great Lakes Symposium on VLSI 2024;2024-06-12

2. Sticky Tags: Efficient and Deterministic Spatial Memory Error Mitigation using Persistent Memory Tags;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

3. Address Scaling: Architectural Support for Fine-Grained Thread-Safe Metadata Management;IEEE Computer Architecture Letters;2024-01

4. A Novel Scenario-Based Testing Approach for Cooperative-Automated Driving Systems;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

5. Towards Practical Application-level Support for Privilege Separation;Proceedings of the 38th Annual Computer Security Applications Conference;2022-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3