Merge

Author:

Linderman Michael D.1,Collins Jamison D.2,Wang Hong2,Meng Teresa H.1

Affiliation:

1. Stanford University, Stanford, CA

2. Intel Corporation, Santa Clara, CA

Abstract

In this paper we propose the Merge framework, a general purpose programming model for heterogeneous multi-core systems. The Merge framework replaces current ad hoc approaches to parallel programming on heterogeneous platforms with a rigorous, library-based methodology that can automatically distribute computation across heterogeneous cores to achieve increased energy and performance efficiency. The Merge framework provides (1) a predicate dispatch-based library system for managing and invoking function variants for multiple architectures; (2) a high-level, library-oriented parallel language based on map-reduce; and (3) a compiler and runtime which implement the map-reduce language pattern by dynamically selecting the best available function implementations for a given input and machine configuration. Using a generic sequencer architecture interface for heterogeneous accelerators, the Merge framework can integrate function variants for specialized accelerators, offering the potential for to-the-metal performance for a wide range of heterogeneous architectures, all transparent to the user. The Merge framework has been prototyped on a heterogeneous platform consisting of an Intel Core 2 Duo CPU and an 8-core 32-thread Intel Graphics and Media Accelerator X3000, and a homogeneous 32-way Unisys SMP system with Intel Xeon processors. We implemented a set of benchmarks using the Merge framework and enhanced the library with X3000 specific implementations, achieving speedups of 3.6x -- 8.5x using the X3000 and 5.2x -- 22x using the 32-way system relative to the straight C reference implementation on a single IA32 core.

Publisher

Association for Computing Machinery (ACM)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis on Heterogeneous Computing;Journal of Physics: Conference Series;2021-09-01

2. Design of self‐adaptable data parallel applications on multicore clusters automatically optimized for performance and energy through load distribution;Concurrency and Computation: Practice and Experience;2018-08-30

3. An Efficient Programming Skeleton for Clusters of Multi-Core Processors;International Journal of Parallel Programming;2017-09-18

4. Understanding GPU Power;ACM Computing Surveys;2016-12-13

5. LondonTube;Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems;2016-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3