Generative Models for Synthetic Urban Mobility Data: A Systematic Literature Review

Author:

Kapp Alexandra1,Hansmeyer Julia1,Mihaljević Helena1

Affiliation:

1. Hochschule für Technik und Wirtschaft Berlin, University of Applied Sciences, Germany

Abstract

Although highly valuable for a variety of applications, urban mobility data is rarely made openly available as it contains sensitive personal information. Synthetic data aims to solve this issue by generating artificial data that resembles an original dataset in structural and statistical characteristics, but omits sensitive information. For mobility data, a large number of corresponding models have been proposed in the last decade. This systematic review provides a structured comparative overview of the current state of this heterogeneous, active field of research. A special focus is put on the applicability of the reviewed models in practice.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference134 articles.

1. 2008. Global Positioning System Standard Positioning Service Performance Standard - 4 th Edition. 2008. Global Positioning System Standard Positioning Service Performance Standard - 4th Edition.

2. 2021. Urban Mobility: The New Forms of Transport. https://padam-mobility.com/en/the-new-forms-of-urban-mobility/ 2021. Urban Mobility: The New Forms of Transport. https://padam-mobility.com/en/the-new-forms-of-urban-mobility/

3. Deep Learning with Differential Privacy

4. Ahmet Aktay , Shailesh Bavadekar , Gwen Cossoul , John Davis , Damien Desfontaines , Alex Fabrikant , Evgeniy Gabrilovich , Krishna Gadepalli , Bryant Gipson , Miguel Guevara , Chaitanya Kamath , Mansi Kansal , Ali Lange , Chinmoy Mandayam , Andrew Oplinger , Christopher Pluntke , Thomas Roessler , Arran Schlosberg , Tomer Shekel , Swapnil Vispute , Mia Vu , Gregory Wellenius , Brian Williams , and Royce  J. Wilson . 2020. Google COVID-19 Community Mobility Reports: Anonymization Process Description (Version 1.1). arXiv : 2004 .04145 (2020). Ahmet Aktay, Shailesh Bavadekar, Gwen Cossoul, John Davis, Damien Desfontaines, Alex Fabrikant, Evgeniy Gabrilovich, Krishna Gadepalli, Bryant Gipson, Miguel Guevara, Chaitanya Kamath, Mansi Kansal, Ali Lange, Chinmoy Mandayam, Andrew Oplinger, Christopher Pluntke, Thomas Roessler, Arran Schlosberg, Tomer Shekel, Swapnil Vispute, Mia Vu, Gregory Wellenius, Brian Williams, and Royce J. Wilson. 2020. Google COVID-19 Community Mobility Reports: Anonymization Process Description (Version 1.1). arXiv: 2004.04145 (2020).

5. Hugo Alatrista-Salas , Peter Montalvo-Garcia , Miguel Nunez-del- Prado , and Julián Salas . 2022 . Geolocated Data Generation and Protection Using Generative Adversarial Networks. In Modeling Decisions for Artificial Intelligence: Proceedings of the 19th International Conference, MDAI 2022 , Sant Cugat, Spain, August 30 – September 2, 2022. Springer-Verlag, Berlin, Heidelberg, 80–91. https://doi.org/10.1007/978-3-031-13448-7_7 10.1007/978-3-031-13448-7_7 Hugo Alatrista-Salas, Peter Montalvo-Garcia, Miguel Nunez-del-Prado, and Julián Salas. 2022. Geolocated Data Generation and Protection Using Generative Adversarial Networks. In Modeling Decisions for Artificial Intelligence: Proceedings of the 19th International Conference, MDAI 2022, Sant Cugat, Spain, August 30 – September 2, 2022. Springer-Verlag, Berlin, Heidelberg, 80–91. https://doi.org/10.1007/978-3-031-13448-7_7

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SecDM: A Secure and Lossless Human Mobility Prediction System;IEEE Transactions on Services Computing;2024-07

2. Federated TimeGAN for Privacy Preserving Synthetic Trajectory Generation;2024 25th IEEE International Conference on Mobile Data Management (MDM);2024-06-24

3. Data-Driven Framework for Generating Travelers with Demographic-Activity-Travel Information;Transportation Research Record: Journal of the Transportation Research Board;2024-02-25

4. Learning Daily Human Mobility with a Transformer-Based Model;ISPRS International Journal of Geo-Information;2024-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3