A logical model for relational abstract domains

Author:

Giacobazzi Roberto1,Scozzari Francesca1

Affiliation:

1. Università di Pisa

Abstract

In this article we introduce the notion of Heyting completion in abstract interpretation. We prove that Heyting completion provides a model for Cousot's reduced cardinal power of abstract domains and that it supplies a logical basis to specify relational domains for program analysis and abstract interpretation. We study the algebraic properties of Heyting completion in relation with other well-known domain transformers, like reduced product and disjunctive completion. This provides a uniform algebraic setting where complex abstract domains can be specified by simple logic formulas, or as solutions of recursive abstract domain equations, involving few basic operations for domain construction, all characterized by a clean logical interpretation. We apply our framework to characterize directionality and condensing and in downward closed analysis of (constraint) logic programs.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference59 articles.

1. Boolean functions for dependency analysis: Algebraic properties and efficient representation

2. A general framework for semantics-based bottom-up abstract interpretation of logic programs

3. BENTON P. 1992a. Strictness analysis of lazy functional programs. Ph.D. thesis University of Cambridge Cambridge U.K.]] BENTON P. 1992a. Strictness analysis of lazy functional programs. Ph.D. thesis University of Cambridge Cambridge U.K.]]

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disjunctive Relational Abstract Interpretation for Interprocedural Program Analysis;Lecture Notes in Computer Science;2019

2. A Theoretical Foundation of Sensitivity in an Abstract Interpretation Framework;ACM Transactions on Programming Languages and Systems;2018-08-29

3. Modular Analysis of Executables Using On-Demand Heyting Completion;Lecture Notes in Computer Science;2017-12-29

4. Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation;Foundations and Trends® in Programming Languages;2017

5. Conjunctive Abstract Interpretation Using Paramodulation;Lecture Notes in Computer Science;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3