Efficient and flexible incremental parsing

Author:

Wagner Tim A.1,Graham Susan L.1

Affiliation:

1. University of Califonia, Berkeley

Abstract

Previously published algorithms for LR ( k ) incremental parsing are inefficient, unnecessarily restrictive, and in some cases incorrect. We present a simple algorithm based on parsing LR( k ) sentential forms that can incrementally parse an arbitrary number of textual and/or structural modifications in optimal time and with no storage overhead. The central role of balanced sequences in achieving truly incremental behavior from analysis algorithms is described, along with automated methods to support balancing during parse table generation and parsing. Our approach extends the theory of sentential-form parsing to allow for ambiguity in the grammar, exploiting it for notational convenience, to denote sequences, and to construct compact (“abstract”) syntax trees directly. Combined, these techniques make the use of automatically generated incremental parsers in interactive software development environments both practical and effective. In addition, we address information preservation in these environments: Optimal node reuse is defined; previous definitions are shown to be insufficient; and a method for detecting node reuse is provided that is both simpler and faster than existing techniques. A program representation based on self-versioning documents is used to detect changes in the program, generate efficient change reports for subsequent analyses, and allow the parsing transformation itself to be treated as a reversible modification in the edit log.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incremental Computation: What Is the Essence? (Invited Contribution);Proceedings of the 2024 ACM SIGPLAN International Workshop on Partial Evaluation and Program Manipulation;2024-01-11

2. UMLsecRT: Reactive Security Monitoring of Java Applications With Round-Trip Engineering;IEEE Transactions on Software Engineering;2024-01

3. Gradual Structure Editing with Obligations;2023 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC);2023-10-03

4. A text-based syntax completion method using LR parsing and its evaluation;Science of Computer Programming;2023-06

5. Partial Parsing for Structured Editors;Proceedings of the 15th ACM SIGPLAN International Conference on Software Language Engineering;2022-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3