A Bayesian Quality-of-Experience Model for Adaptive Streaming Videos

Author:

Duanmu Zhengfang1ORCID,Liu Wentao1ORCID,Chen Diqi2ORCID,Li Zhuoran1ORCID,Wang Zhou1ORCID,Wang Yizhou3ORCID,Gao Wen3ORCID

Affiliation:

1. University of Waterloo, Canada

2. Chinese Academy of Sciences, China

3. Peking University, China

Abstract

The fundamental conflict between the enormous space of adaptive streaming videos and the limited capacity for subjective experiment casts significant challenges to objective Quality-of-Experience (QoE) prediction. Existing objective QoE models either employ pre-defined parametrization or exhibit complex functional form, achieving limited generalization capability in diverse streaming environments. In this study, we propose an objective QoE model, namely, the Bayesian streaming quality index (BSQI), to integrate prior knowledge on the human visual system and human annotated data in a principled way. By analyzing the subjective characteristics towards streaming videos from a corpus of subjective studies, we show that a family of QoE functions lies in a convex set. Using a variant of projected gradient descent, we optimize the objective QoE model over a database of training videos. The proposed BSQI demonstrates strong prediction accuracy in a broad range of streaming conditions, evident by state-of-the-art performance on four publicly available benchmark datasets and a novel analysis-by-synthesis visual experiment.

Funder

Natural Sciences and Engineering Research Council (NSERC) of Canada

Discovery Grant, Canada Research Chair program

Alexander Graham Bell Canada Graduate Scholarship program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference84 articles.

1. Learning to predict streaming video QoE: Distortions, rebuffering and memory;Bampis C. G.;ArXiv preprint arXiv:1703.00633,2017

2. C. G Bampis, A. C. Bovik, and Z. Li. 2018. A simple prediction fusion improves data-driven full-reference video quality assessment models. In Picture Coding Symposium. IEEE, 298–302.

3. Continuous Prediction of Streaming Video QoE Using Dynamic Networks

4. Towards perceptually optimized end-to-end adaptive video streaming;Bampis C. G.;ArXiv preprint arXiv:1808.03898,2018

5. Study of Temporal Effects on Subjective Video Quality of Experience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predição de Qualidade de Vídeo em Serviços de Streaming utilizando Redes 5G;Anais do VIII Workshop de Computação Urbana (CoUrb 2024);2024-05-20

2. DSA-QoE: Quality of Experience Evaluation for Streaming Video Based on Dual-Stage Attention;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

3. Prediction of Multimedia Quality over 5G Networks in Urban Environments;2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT);2024-04-29

4. Quality of Experience in Video Streaming: Status Quo, Pitfalls, and Guidelines;2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS);2024-01-03

5. New Approach for an Affective Computing- Driven Quality of Experience (QoE) Prediction;IEEE Communications Magazine;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3