Affiliation:
1. University of Rostock, Rostock, Germany
2. Georgia Institute of Technology, Atlanta, GA
Abstract
As data and knowledge about cell-biological systems increases so does the need for simulation tools to support a hypothesis driven wet-lab experimentation. Discrete event simulation has received a lot of attention lately, however, often its application is hampered by its lack of performance. One solution are parallel, distributed approaches, however, their application is limited by the amount of parallelism available in the model. Recent studies have shown that spatial aspects are crucial for cell biological dynamics and they are also a promising candidate to exploit parallelism. Promises and specific requirements imposed by a spatial simulation of cell biological systems will be illuminated by a parallel and distributed variant of the Next-Subvolume Method (NSM), which augments the Stochastic Simulation Algorithm (SSA) with spatial features, and its realization in a grid-inspired simulation system called Aurora.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献