Friendly Fire

Author:

Balliu Musard1,Merro Massimo2ORCID,Pasqua Michele2,Shcherbakov Mikhail1

Affiliation:

1. KTH Royal Institute of Technology, Stockholm, Sweden Sweden

2. University of Verona, Verona, Italy

Abstract

IoT platforms enable users to connect various smart devices and online services via reactive apps running on the cloud. These apps, often developed by third-parties, perform simple computations on data triggered by external information sources and actuate the results of computations on external information sinks. Recent research shows that unintended or malicious interactions between the different (even benign) apps of a user can cause severe security and safety risks. These works leverage program analysis techniques to build tools for unveiling unexpected interference across apps for specific use cases. Despite these initial efforts, we are still lacking a semantic framework for understanding interactions between IoT apps. The question of what security policy cross-app interference embodies remains largely unexplored. This article proposes a semantic framework capturing the essence of cross-app interactions in IoT platforms. The framework generalizes and connects syntactic enforcement mechanisms to bisimulation-based notions of security, thus providing a baseline for formulating soundness criteria of these enforcement mechanisms. Specifically, we present a calculus that models the behavioral semantics of a system of apps executing concurrently, and use it to define desirable semantic policies targeting the security and safety of IoT apps. To demonstrate the usefulness of our framework, we define and implement static analyses for enforcing cross-app security and safety, and prove them sound with respect to our semantic conditions. We also leverage real-world apps to validate the practical benefits of our tools based on the proposed enforcement mechanisms.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IoT Anomaly Detection Via Device Interaction Graph;2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN);2023-06

2. AbU: A calculus for distributed event-driven programming with attribute-based interaction;Theoretical Computer Science;2023-05

3. The AbU Language: IoT Distributed Programming Made Easy;IEEE Access;2022

4. A Survey on IoT-Enabled Home Automation Systems: Attacks and Defenses;IEEE Communications Surveys & Tutorials;2022

5. On the Security and Safety of AbU Systems;Software Engineering and Formal Methods;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3