mSIMPAD

Author:

Li Chun-Tung1ORCID,Cao Jiannong1,Liu Xue2,Stojmenovic Milos3

Affiliation:

1. The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

2. McGill University, Montreal, Quebec, Canada

3. Singidunum University, Belgrade, Serbia

Abstract

A successive similar pattern (SSP) is a series of similar sequences that occur consecutively at non-regular intervals in time series. Mining SSPs could provide valuable information without a priori knowledge, which is crucial in many applications ranging from health monitoring to activity recognition. However, most existing work is computationally expensive, focuses only on periodic patterns occurring in regular time intervals, and is unable to recognize patterns containing multiple periods. Here we investigate a more general problem of finding similar patterns occurring successively, in which the similarity between patterns is measured by the z -normalized Euclidean distance. We propose a linear time, robust method, called Multiple-length Successive sIMilar PAtterns Detector (mSIMPAD), that mines SSPs of multiple lengths, making no assumptions regarding periodicity. We apply our method on the detection of repetitive movement using a wearable inertial measurement unit. The experiments were conducted on three public datasets, two of which contain simple walking and idle data, whereas the third is more complex and contains multiple activities. mSIMPAD achieved F-score improvements of 3.2% and 6.5%, respectively, over the simple and complex datasets compared to the state-of-the-art walking detector. In addition, mSIMPAD is scalable and applicable to real-time applications since it operates in linear time complexity.

Funder

Research Grants Council, University Grants Committee

National Key Research and Development Program of China

Serbian Ministry of Science and Education

Publisher

Association for Computing Machinery (ACM)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Memetic segmentation based on variable lag aware for multivariate time series;Information Sciences;2024-02

2. Quasi-Periodicity Detection via Repetition Invariance of Path Signatures;Advances in Knowledge Discovery and Data Mining;2023

3. 4,300 steps per day prior to surgery are associated with improved outcomes after pancreatectomy;HPB;2023-01

4. Predicting Post-Operative Complications with Wearables;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2022-07-04

5. Multi-Task Learning for Randomized Controlled Trials;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2022-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3