Affiliation:
1. WAran Research Foundation (WARFT), Chennai, India
2. WARFT
3. Former WARFT
Abstract
As a result of the increasing requirements of present and future computation intensive applications, there have been many fundamentally divergent approaches such as the Blue-Gene, TRIPS, HERO, Cascade spurred in order to provide increased performance at node level in supercomputing clusters. The design of the node architecture should be such that 'Cost-Effective Supercomputing' is realized without compromising on the requirements of the ever-performance hungry grand challenge applications. However, to increase performance at the cluster level, scalability and likewise tackling the mapping complexity across the large cluster of nodes becomes critical. The potential of such a node architecture can be fully exploited only with an appropriate cluster architecture. In an attempt to address these issues for efficient and Cost-Effective Supercomputing, we propose a novel paradigm for designing High Performance Clusters, in two papers. In paper-II, we discuss the design of operating system and cluster architecture. In this paper, we present a node architecture model based on the Memory In Processor paradigm and discuss the related architectural aspects (ISA, compiler, network interconnection etc). We provide a design space based on the proposed model for which a simulator is developed, with the help of which the performance of such a node architecture is outlined.
Publisher
Association for Computing Machinery (ACM)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Future generation supercomputers II;ACM SIGARCH Computer Architecture News;2007-12