A Survey of Evaluation Metrics Used for NLG Systems

Author:

Sai Ananya B.1ORCID,Mohankumar Akash Kumar2,Khapra Mitesh M.3

Affiliation:

1. Robert-Bosch Centre for Data Science and AI, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India

2. Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India

3. Robert-Bosch Centre for Data Science and AI, Indian Institute of Technology, and AI4Bharat, Chennai, Tamil Nadu, India

Abstract

In the last few years, a large number of automatic evaluation metrics have been proposed for evaluating Natural Language Generation (NLG) systems. The rapid development and adoption of such automatic evaluation metrics in a relatively short time has created the need for a survey of these metrics. In this survey, we (i) highlight the challenges in automatically evaluating NLG systems, (ii) propose a coherent taxonomy for organising existing evaluation metrics, (iii) briefly describe different existing metrics, and finally (iv) discuss studies criticising the use of automatic evaluation metrics. We then conclude the article highlighting promising future directions of research.

Funder

Department of Computer Science and Engineering

Robert Bosch Center for Data Science and Artificial Intelligence

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference147 articles.

1. Douglas Adams. 2007. The Hitchhiker’s Guide to the Galaxy. Random House Publishing Group.

2. Image Understanding using vision and reasoning through Scene Description Graph

3. Jacopo Amidei, Paul Piwek, and Alistair Willis. 2018. Rethinking the agreement in human evaluation tasks. In Proceedings of the 27th International Conference on Computational Linguistics. Association for Computational Linguistics, 3318–3329.

4. Ananthakrishnan Pushpak Bhattacharyya Murugesan Sasikumar and Ritesh M. Shah. 2006. Some issues in automatic evaluation of english-hindi MT: More blues for BLEU. ICON .

5. Peter Anderson Basura Fernando Mark Johnson and Stephen Gould. 2016. SPICE: Semantic propositional image caption evaluation. In European Conference on Computer Vision . B. Leibe J. Matas N. Sebe and M. Welling (Eds.) Lecture Notes in Computer Science Vol. 9909. Springer 382–398.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3