Hogel-Free Holography

Author:

Chakravarthula Praneeth1,Tseng Ethan1,Fuchs Henry2,Heide Felix1

Affiliation:

1. Princeton University and UNC Chapel Hill, Princeton, NJ

2. UNC Chapel Hill, Chapel Hill, NC

Abstract

Holography is a promising avenue for high-quality displays without requiring bulky, complex optical systems. While recent work has demonstrated accurate hologram generation of 2D scenes, high-quality holographic projections of 3D scenes has been out of reach until now. Existing multiplane 3D holography approaches fail to model wavefronts in the presence of partial occlusion while holographic stereogram methods have to make a fundamental tradeoff between spatial and angular resolution. In addition, existing 3D holographic display methods rely on heuristic encoding of complex amplitude into phase-only pixels which results in holograms with severe artifacts. Fundamental limitations of the input representation, wavefront modeling, and optimization methods prohibit artifact-free 3D holographic projections in today’s displays. To lift these limitations, we introduce hogel-free holography which optimizes for true 3D holograms, supporting both depth- and view-dependent effects for the first time. Our approach overcomes the fundamental spatio-angular resolution tradeoff typical to stereogram approaches. Moreover, it avoids heuristic encoding schemes to achieve high image fidelity over a 3D volume. We validate that the proposed method achieves 10 dB PSNR improvement on simulated holographic reconstructions. We also validate our approach on an experimental prototype with accurate parallax and depth focus effects.

Funder

NSF

NSF CAREER Award

Sony Young Faculty Award

Project X Innovation Award

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lensless holographic dynamic projection system based on weakly supervised learning;Optics & Laser Technology;2024-10

2. Radiance-field holography for high-quality 3D reconstruction;Optics and Lasers in Engineering;2024-07

3. Physically Guided Generative Adversarial Network for Holographic 3D Content Generation From Multi-View Light Field;IEEE Journal on Emerging and Selected Topics in Circuits and Systems;2024-06

4. Point spread function-inspired deformable convolutional network for holographic displays;Advanced Fiber Laser Conference (AFL2023);2024-03-18

5. Divide-Conquer-and-Merge: Memory- and Time-Efficient Holographic Displays;2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR);2024-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3