Adversarial Multimodal Representation Learning for Click-Through Rate Prediction
Author:
Affiliation:
1. Alibaba Group
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3366423.3380163
Reference39 articles.
1. Representation Learning: A Review and New Perspectives
2. Fedor Borisyuk Liang Zhang and Krishnaram Kenthapadi. 2017. LiJAR: A system for job application redistribution towards efficient career marketplace. In SIGKDD. 1397–1406. Fedor Borisyuk Liang Zhang and Krishnaram Kenthapadi. 2017. LiJAR: A system for job application redistribution towards efficient career marketplace. In SIGKDD. 1397–1406.
3. Konstantinos Bousmalis Nathan Silberman David Dohan Dumitru Erhan and Dilip Krishnan. 2017. Unsupervised pixel-level domain adaptation with generative adversarial networks. In CVPR Vol. 1. 7. Konstantinos Bousmalis Nathan Silberman David Dohan Dumitru Erhan and Dilip Krishnan. 2017. Unsupervised pixel-level domain adaptation with generative adversarial networks. In CVPR Vol. 1. 7.
4. Paul Covington Jay Adams and Emre Sargin. 2016. Deep neural networks for youtube recommendations. In Recsys. 191–198. Paul Covington Jay Adams and Emre Sargin. 2016. Deep neural networks for youtube recommendations. In Recsys. 191–198.
Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-modal fusion network guided by prior knowledge for 3D CAD model recognition;Neurocomputing;2024-07
2. Enhancing Accuracy for Super Spreader Identification in High-Speed Data Streams;Proceedings of the VLDB Endowment;2024-07
3. VT-ReID: Learning Discriminative Visual-Text Representation for Polyp Re-Identification;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14
4. Unified Visual Preference Learning for User Intent Understanding;Proceedings of the 17th ACM International Conference on Web Search and Data Mining;2024-03-04
5. It’s Not Always about Wide and Deep Models: Click-Through Rate Prediction with a Customer Behavior-Embedding Representation;Journal of Theoretical and Applied Electronic Commerce Research;2024-01-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3