A probabilistic approach to mining geospatial knowledge from social annotations

Author:

Intagorn Suradej1,Lerman Kristina1

Affiliation:

1. USC Information Sciences Institute, Marina del Rey, CA

Abstract

Knowledge produced online often comes in the form of free-text labels, known as tags, with which users annotate the content they create, such as photos and videos. Increasingly, such content is also georeferenced, i.e., it is associated with geographic coordinates. The implicit relationships between tags and their locations can tell us much about how people conceptualize places and relations between them. However, extracting such knowledge from social annotations presents many challenges, since annotations are often ambiguous, noisy, uncertain and spatially inhomogeneous. We introduce a probabilistic framework for modeling georeferenced annotations and a method for learning model parameters from data. The framework is flexible and general, and can be used in a variety of applications that mine geospatial knowledge from user generated content. Specifically, we study two problems --- extracting place semantics and predicting locations of photos from tags --- and show that performance of our method is comparable to that of state-of-the-art approaches. Moreover, we show that combining the two problems leads to a better performance on the location prediction task than baseline.

Funder

Division of Information and Intelligent Systems

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

Association for Computing Machinery (ACM)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning locality maps from noisy geospatial labels;Proceedings of the 35th Annual ACM Symposium on Applied Computing;2020-03-29

2. Constructing Geographic Dictionary from Streaming Geotagged Tweets;ISPRS International Journal of Geo-Information;2019-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3