AI-Enabled Task Offloading for Improving Quality of Computational Experience in Ultra Dense Networks

Author:

Gu Bo1ORCID,Alazab Mamoun2ORCID,Lin Ziqi3ORCID,Zhang Xu3ORCID,Huang Jun4ORCID

Affiliation:

1. School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China

2. College of Engineering, Charles Darwin University, Casuarina, Australia

3. School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China

4. School of Cybersecurity, Northwestern Polytechnical University, Xi’an, China

Abstract

Multi-access edge computing (MEC) and ultra-dense networking (UDN) are recognized as two promising paradigms for future mobile networks that can be utilized to improve the spectrum efficiency and the quality of computational experience (QoCE) . In this paper, we study the task offloading problem in an MEC-enabled UDN architecture with the aim to minimize the task duration while satisfying the energy budget constraints. Due to the dynamics associated with the environment and parameter uncertainty, designing an optimal task offloading algorithm is highly challenging. Consequently, we propose an online task offloading algorithm based on a state-of-the-art deep reinforcement learning (DRL) technique: asynchronous advantage actor-critic (A3C) . It is worthy of remark that the proposed method requires neither instantaneous channel state information (CSI) nor prior knowledge of the computational capabilities of the base stations. Simulations show that the our method is able to learn a good offloading policy to obtain a near-optimal task allocation while meeting energy budget constraints of mobile devices in the UDN environment.

Funder

National Science Foundation of China

National Key R&D Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3