On Reducing User Interaction Data for Personalization

Author:

Rendle Steffen1,Zhang Li1

Affiliation:

1. Google Research

Abstract

Most recommender systems rely on user interaction data for personalization. Usually, the recommendation quality improves with more data. In this work, we study the quality implications when limiting user interaction data for personalization purposes. We formalize this problem and provide algorithms for selecting a smaller subset of user interaction data. We propose a selection method that picks the subset of a user’s history items that maximizes the expected recommendation quality. We show on well studied benchmarks that it is possible to achieve high quality results with small subsets of less than ten items per user.

Publisher

Association for Computing Machinery (ACM)

Reference39 articles.

1. Mehdi Allahyari Seyedamin Pouriyeh Mehdi Assefi Saeid Safaei Elizabeth D Trippe Juan B Gutierrez and Krys Kochut. 2017. Text summarization techniques: a brief survey. arXiv preprint arXiv:1707.02268(2017). Mehdi Allahyari Seyedamin Pouriyeh Mehdi Assefi Saeid Safaei Elizabeth D Trippe Juan B Gutierrez and Krys Kochut. 2017. Text summarization techniques: a brief survey. arXiv preprint arXiv:1707.02268(2017).

2. Oren Anava , Shahar Golan , Nadav Golbandi , Zohar Karnin , Ronny Lempel , Oleg Rokhlenko , and Oren Somekh . 2015 . Budget-Constrained Item Cold-Start Handling in Collaborative Filtering Recommenders via Optimal Design . In Proceedings of the 24th International Conference on World Wide Web (WWW ’15). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 45–54 . https://doi.org/10.1145/2736277.2741109 10.1145/2736277.2741109 Oren Anava, Shahar Golan, Nadav Golbandi, Zohar Karnin, Ronny Lempel, Oleg Rokhlenko, and Oren Somekh. 2015. Budget-Constrained Item Cold-Start Handling in Collaborative Filtering Recommenders via Optimal Design. In Proceedings of the 24th International Conference on World Wide Web (WWW ’15). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 45–54. https://doi.org/10.1145/2736277.2741109

3. Thierry Bertin-Mahieux , Daniel P. W. Ellis , Brian Whitman , and Paul Lamere . 2011 . The million song dataset . In In Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR). Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman, and Paul Lamere. 2011. The million song dataset. In In Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR).

4. Operationalizing the Legal Principle of Data Minimization for Personalization

5. Steve Chien , Prateek Jain , Walid Krichene , Steffen Rendle , Shuang Song , Abhradeep Thakurta , and Li Zhang . 2021 . Private Alternating Least Squares: Practical Private Matrix Completion with Tighter Rates . In Proceedings of the 38th International Conference on Machine Learning (Proceedings of Machine Learning Research), Marina Meila and Tong Zhang (Eds.), Vol.  139 . PMLR, 1877–1887. https://proceedings.mlr.press/v139/chien21a.html Steve Chien, Prateek Jain, Walid Krichene, Steffen Rendle, Shuang Song, Abhradeep Thakurta, and Li Zhang. 2021. Private Alternating Least Squares: Practical Private Matrix Completion with Tighter Rates. In Proceedings of the 38th International Conference on Machine Learning (Proceedings of Machine Learning Research), Marina Meila and Tong Zhang (Eds.), Vol.  139. PMLR, 1877–1887. https://proceedings.mlr.press/v139/chien21a.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3