Self-stabilizing clock synchronization in the presence of Byzantine faults

Author:

Dolev Shlomi1,Welch Jennifer L.2

Affiliation:

1. Ben-Gurion University of the Negev, Beer-Sheva, Israel

2. Texas A&M University, College Station, Texas

Abstract

We initiate a study of bounded clock synchronization under a more severe fault model than that proposed by Lamport and Melliar-Smith [1985]. Realistic aspects of the problem of synchronizing clocks in the presence of faults are considered. One aspect is that clock synchronization is an on-going task, thus the assumption that some of the processors never fail is too optimistic. To cope with this reality, we suggest self-stabilizing protocols that stabilize in any (long enough) period in which less than a third of the processors are faulty. Another aspect is that the clock value of each processor is bounded. A single transient fault may cause the clock to reach the upper bound. Therefore, we suggest a bounded clock that wraps around when appropriate.We present two randomized self-stabilizing protocols for synchronizing bounded clocks in the presence of Byzantine processor failures. The first protocol assumes that processors have a common pulse, while the second protocol does not. A new type of distributed counter based on the Chinese remainder theorem is used as part of the first protocol.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-stabilizing indulgent zero-degrading binary consensus;Theoretical Computer Science;2024-03

2. Toward Time Synchronization in Delay Tolerant Network based Solar System Internetworking;2023 IEEE Aerospace Conference;2023-03-04

3. Self-stabilizing Byzantine-Tolerant Recycling;Lecture Notes in Computer Science;2023

4. TADA: A Toolkit for Approximate Distributed Agreement;Distributed Applications and Interoperable Systems;2023

5. Origin of Self-Stabilization;Edsger Wybe Dijkstra;2022-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3